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MOTION OF A VISCO-ELASTIC SPHERE 
IN A CENTRAL NEWTONIAN FORCE FIELD* 

V. G. VIL'KE 

Approximate equations are obtained, describing the evolution of translational-rota- 

tional motion of a visco-elastic sphere in a central Newtonian force field, its 

steady-state motions are found, and their stability is investigated. The motion 

described can serve as one model of tidal phenomena under the motion of a planet of 

the solar system /l/. It has been shown previously /2/ that in the presence of 

energy dissipation a deformable planet tends towards a steady-state rotation around 

the attracting center, under which the planet's center of mass describes a circle, 

while its orientation in the orbital axes in unchanged. 

1. Equations of motion. Let R(t) be the radius-vector of the center C of a sphere 

relative to inertial axes 0 ~,~,~, with origin at the attracting center and let E(r,t) be the 

vector from point C to some point of the deformed sphere (r E Q, where Q is the domain occup- 

ied by the sphere in the undeformed state). At point C we introduce a moving coordinate 

system CWW, connected with the changeablesphere by the condition 

E(r,t)=o(t)(r-Lu(r,t)), ~rotudcr=O 
h 

(1.1) 

Here 0 (t) E 80 (3) is an orthogonal matrix specifying the rotation of a three-dimensional 

space. The second relation in (1.1) signifies that in an integral sense the sphere under 

deformations does not rotate relative to the moving axes. This fact permits us to apply the 

linear theory of elasticity of small deformations when studying the sphere's motion relative 

to coordinate system cz,z,z,. Relations (1.1) uniquely define the matrix o(t) and the dis- 

placements u with respect to the specified field b(r, t). From the vector equation 

c 
rot [0-'g(r, t)- r] dx= 0 

k! 

we find three parameters (the Euler angles, for example) specifying matrix o(t), and, further, 
" = o-'g (r, t) - r. 

The absolute acceleration of a point on the sphere, in projection onto the axes of the 

moving coordinate system C%W, I and its virtual displacements are given by the relations 

w (r. t) == O-'R" + e'X (r -I- u) i 0 X [W X (r + u)] + 20 X U' (. "" (1.2) 

O-'Sg = 0m16R i 6a x (r x II+&, 6a E R" 

Here E and o are the angular acceleration and the angular velocity, respectively, of coordin- 

ate system CX,.rL13 . The work of the active forces on the virtual displacements is prescrib- 

ed in the form 

6A = - 6U -SE [u] - (VD ;J’], A”), U=-\ PLP dz 

L1 [CR + 0 (r + u))~I”~ 

6U = (VU [R -+- 0 (r + u)], 6R + o[6ax(r + u)] -1. oh) tiE [“I = (VE 1~1, 6~) = 5 2 & 6uij dx, 
51 i, j=l ‘) 

(1.3) 

In (1.3) we have used a model of the linear theory of visco-elasticity of small deformations 

because the relative displacements of the sphere's points under deformations II (r,t) are small. 

The coefficients a,,,,ij and dmnij are constant and symmetric with respect to the first two 

and the last two indices, and the quadratic forms corresponding to them are positive definite 

in the variables eij and eij', respectively. The sphere is assumed to be homogeneous and 

isotropic with constant density p. The constant p characterizes the intensity of the 

gravitational field. 

*Prikl.Matem.Mekhan.,44,No.3,395-402,198O 
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Allowing for (1.2), (1.3) and relations (1.11, we represent the D'Alernbert-Lagrange 

variational principle as 

j - " 
[O’R +EX(~-~U)+OX(OX(~-~U))+~~X~‘-~-U”][O-~~RI_~~X(~~~~)-~S~]~~~~- (1.4) 

(O-WI [R -+O (r + U)], O-‘6R f 6aX(r -IT u) + 6~) ~- (VE [ul, 6~) f (VD [u’], 6~) + 

h~rot6udx=O, V6UET. 
Id 

where h is the undetermined Lagrange multiplier, v = (W*l (8))3 is the system's configuration 

space, and the variations 6R, 6a, 6u (P, t) are independent. The system's equations of motion 

iMO-‘R’~f~[exu~-ox(oXu)+2~xu~fu~~]pds~~ [O-W(R+O(r+u)]ds=O, M=ipdx (1.5) 
Q b n 

s tr f u, X IO-‘R” + e x (r + u) -+ o x (ox (r + u)) + 20x u’ + II”] p dx + s (r + u) x O-‘VU [R + 0 (r + u)] dx = 0 
R R 

j [0-IR” -I- cX(r+u)faX(tiX(r-+u))-+2oxu’+u”]X6updz + (VE lul, 6~) -k ;I’ O-‘Vc’ [R + 0 (r + u)] X 

~ud~+(V~W,6u)+Xu)6udrJ=o, v6uEv 
r 

follow from (1.4). In the third equation in (1.5), when transforming the last integral, we 

used the Ostrogradskii-Gauss formula(* the form 

Jhrothuds= l(hxh)nda 
P b 

where r is the sphere's surface and II is thenormal to the sphere's surface. Under conditions 

(1.1) Eqs. (1.5) are the exact equations of motion of the deformable sphere in a Newtonian 

force field within the framework of the linear theory of visco-elasticity. They are valid for 

a deformable body of arbitrary form. When uss 0 the first two equations in (1.5) describe 

the translational-rotational motion of a rigid body in a Newtonian force field /4/. In the 
case of a hmogeneous sphere they can be integrated exactly: the sphere's center moves on a 

Keplerian orbit, while the sphere itself rotates with constant angular velocity around an 

invariable axis. With a great degree of accuracy a planet in the solar system has a similar 

motion. Let us study the effect of elasticity of the sphere on this motion. 

Let the following inequalities hold: 

0 Q< 2‘1, 2n I T < vl, o < ~1, 2n I T < x, , I u (r, 4 I eii I r I, r. < I R (t) I (1.6) 

Here o, T,R(t) are the sphere's angular rotation velocity, the period, and the radius-vector 

of Keplerian motion, respectively, vt, x1 are the frequency and the damping decrement of the 

sphere's natural oscillations at the lowest harmonic, r0 is the sphere's radius. Inequalit- 

ies (1.6) permit us to neglect the inertial terms in the third equation in (1.5), to replace 

rfuby P, and to obtain an approximate equation in u (r, t) describing the quasi-static 

process of deformation of the sphere 

(VE [ul -.I- VD [u’l, au) + [ @oX(C~xr) -t O-‘VW [R]Or) Gudx + s (h~n)6uda= 0, V8u~l' (1.7) 
ir r 

Here the quantities o,O(t), R (t) correspond to the generating solution: 0 (t) is the matrix 

of transfer to the axes connected with the sphere and rotating with angular velocity (I) = const, 

R(t) is the radius-vector of the sphere's center of mass when moving on a Keplerian orbit. 
In what follows we shall take it that these quantities evolve. Only the linear terms relative 

to r in the expansion of the gradient of functional U [R + Or1 is retained in (1.7). We set 

6u = 6s X r and we note that all terms but the last in (1.7) vanish since the work of the 
elastic and the dissipative forces on infinitesimal rotations equals zero and the operators 

w X (o X) and O-‘V2V[R]0 are symmetric. Then 

j (Ax q ) (6ax r) do = 4nro3 (A., 8a) = 0, VSa E RS 
r 

and 1, = 0. Equation (1.7) becomes linear, which permits us to seek its solution as a sum 
of particular solutions each of which is generated by an appropriate force field. The force 
field 0 X (0 X r) P is the field of centrifugal inertia forces when the coordinate system 

') Editor's Note: English equivalent is "Gauss divergence formula". 
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rotates with angular velocity 0. The field of the gradient of 

O-‘V’U [R] Or = - % _ $?.& 10-1~ x (o-1~” x r)] 

the gravitational forces is 

R"+ (1.9) 

The first term in (1.8) corresponds to a spherically symmetric field and generates a spheric- 
ally symmetric deformation of the sphere, while the second term specifies an axisymmetric 
field (the symmetry axis is determined by the moving vector O-'R") opposite to the field of 

centrifugal forces due to the rotation with angular velocity (3,+p)*/~, 
We seek the solution of (1.7) as the sum u = u1(r)~4 u, (r,t) + u,(r,t), where the "i (i = 

1,2,3) satisfy the equations 

(VE ]&I, 6~) i- j" l~x(0xr)]p6udx=O, 
R 

(vE[u~]+~~~n.'],6")-~~r~udx=~, V&,=v (1.9) 
R 

(VE[uz] + VD[u:,‘],h)- 5 g (O-iR”(O-‘R”xr)] 6udx=O 

a 
The first equation in (1.9) corresponds to the problem on the deformation of a uniformly ro- 

tating sphere and, in the case of a homogeneous isotropic sphere, is written in the Lam6 form 

/5/ 
Au1 + & graddivul-eex(e,xr)w2p,=0, PI= P 

z(i+v) 
E (1.10) 

where E and v are the Young's modulus and the Poisson ratio, respectively, era is the unit 

vector along the sphere's rotation axis. The boundary conditions for the function u1 are that 

the stresses on the sphere's surface equal zero (u,,=O). The solution of the sphere deforma- 

tion problem in the absence of mass forces was obtained by Thompson with the use of spherical 

functions /5/. The special form of the mass forces in problem (1.10) enables us to obtain 

its solution as a sum of homogeneous spherical functions of third and first orders 

u = qgpo2 / E, v = qlypo2 / E, w = qzzpo* / E (1.11) 

q1 = b, (5’ + y”) +- b,z2 + cl, q2 = a, (2 + y’) + agz2 i- c, 

Here u, v, w are the components of vector u, in coordinate system CXYZ, a,, a2, b,, b,, cl, c2 are 

constants yet to be determined. The coordinate system is connected with the sphere when its 

center of mass moves on a Keplerian orbit, while the sphere itself rotates around the center 

of mass (around the axis Cz). Substituting (1.11) into (1.10) and imposing the boundary con- 

dition s,= 0 on the sphere's surface, we obtain a system of six algebraic equations with 

constant coefficients in a,, a,, b,, b,, cl> c, 

(6 + @)b, + 2oa, = -2 (1 + v), p = 1 / (1 - 2v), 2fibz + 3 (1 -t fi)a, = 0, y = fh (1.12) 

(3 - 4y)b, t v, = a, + 2 (1 + y)b, + 3ya,, (2 + Y)% + 6, + 4yb, = 3 (1 + y)a, + 2yb, 

(1 + 2y)c, f yc2 = -rot [(3 + 4y)b, + ya,l, 2YC1 +- (1 + y)c, = -ro2 1(2 -t y)a, + b, + 4ybJ 

It is quite cumbersome to solve (1.12) in its general form. For a qualitative estimate of 

the coefficients and to simplify the calculations we take v= 0.24, which corresponds to the 

Poisson ratio for iron, and we find 

a, = 0.7669, a* = 0.31117, b, = -0.2539, b, = -0.70945, cl = 0.67453r,z, c2 = -0.91146r,* (1.13) 

We find the solutions of the second and third equations in (1.9) under the assumption 

D 1111 = XE [111(x< 1) since the functionals E [u] and D[u] have like structure. This con- 

dition signifies that a proportional dependency exists between the Lam& elasticity coefficients 

and the viscosity coefficients. In view of the spherical symmetry of the force field the 

second equation in (1.9) has a spherically symmetric solution of form 

n2(rr t)= .s (1) (p(r)', g(t)=$+l!&(~j 

We find the solution of the third equation in (1.9) in the form 

(1.14) 

ua(r, t)= 
i: 

(_ l)nXn """$~ t) (1.15) 

Tl=o 

where us0 (r, t) is a solution of the equation 

(VE IQ,], 6~) - $$ 5 [0-‘R” x (0-‘R(O) x r)] 6u dx = 0, V&J E V (1.16) 

n 

The structure of (1.16) is analogous to that of (1.10). In the orbital coordinate system 

Cs'y'z' (axis Cz’ is directed along O-lRO and axis Cy' is orthogonal to the orbital plane) 
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the solution of (1.16) can be written as 

%0' = Ql's'a (0, vsO' = p,'y'a (t), wzO' = q,‘z’a (t), a (t) = -3pp 1 (ER3) (1.17) 

Taking X as a sufficiently small quantity and desiring to obtain qualitative results, we 

restrict ourselves in (1.15) to the first two terms and, as an approximate solution of the 

third equation in (1.9), we obtain the function 

~3 (r, t) = A-l (t) em' (A (t) r, t) - x -& [A-l (t) ~30’ (A (t) r, t)] (1.18) 

Here A (t) is the orthogonal matrix of transition from the axes of Cryz to the orbital co- 

ordinate system Cx'y'z'. In the orbital coordinate system solution (1.18) becomes 

us' (r’, t) = (a - p’)[(B,r’, r’)B, + (W, r’)B4 + ro2B,lr’ + a~ [(B,r’, r’) (Si?, - B,S) + (1.19) 

(Bar’, r’)(SB, - B,S) + ro2 (SB, - B,S)I r’ - 2ax [(B,Sr', r')B, + (B,Sr', r’)B,lr’ 

4 = diag {h, b,, b,}, & = diag (1, 1, 0), B, = diag {al, a,, a,}, B, = diag (0, 0, 1) 

ro2B, = diag {c,, cl, cZ}, S _ A'A-1 = _.J (n-1). 

Here S is a skewsymmetric matrix characterizing the sphere's angular velocity Q* relative to 

the orbital coordinate system Cs'y'z'. The mechanical sense of solution (1.18) is that the 

first term in it defines the tidal deformation along the axis connecting the center of mass 

with the attractive center and the second term characterizes the lag in the tidal deformation 

because of the viscous friction force. 
Allowing for the property that the functions found are odd, "< (r, t) = -ui (-r, t) (i = 

1,2,3),we compute the integral containing u(r,t) in the first two of Eqs. (1.5) and we obtain 

approximate equations describing the translational-rotational motion of the deformed sphere 

MR" -i- R" {fi~l'~~-* + Q$-' I- 3xflP (R", R') x Q2 + Q,&" [I,* - 5 (R", L)?]) j- 2/&n-4 (I,, R")L ~. (1.20) 

xQ3R-: IR" x (L - JOa') = 0, L' + xQJP [L - J&Y - (L, R")R"l $ 2QJP (L,R")(Lx R") = 0 

9p21,2 
- Q3= J,E, s (I(&r, r) - (B:r,r) i- cl - c~I(~~ + 2') f 2 (b, - b, + a, - (IT) xy) dx 

R 

In Eqs. (1.20) L is the angular momentum of the sphere relative to the Koenig axes 

(L z J,w), J, is the moment of inertia of the undeformed sphere relative to the axis passing 

through the center of mass, a' is the sphere's angular rotation velocity relative to the 

orbital axes Cx’y’z’. When computing the integrals in (1.5) only the terms linear in u were 

left. The vector-valued quantities in (1.20) are taken in the inertial coordinate system. 

2. Steady-state motions and their stability. Equations (1.20) enable us to 

find the evolution of the translational-rotational motion of a visco-elastic sphere in a 

Newtonian force field. They have the first integral, i.e., the law of conservation of angular 

momentum 
RxMR'+L=G 

(2.1) 
The sphere's steady-state motions are possible only when the forces determining energy dis- 

sipation vanish (the terms containing the multiplier X in (1.20)) /l/ 

3R-8(R",R')Q,R" + Q,R-'IR" x (L - J,Q’)l = 0, QJP [L - J,P’ - (I,, R")R"] = 0 (2.2) 

From the first of Eqs. (2.2) follows (R",R') = 0. We multiply the first of Eqs. (2.2) scalarly 

by R' + R (R")' and the second by J,-'L, we add the results, and, after manipulations, we 

obtain 
(L - JC!‘)” + (L, R")* = 0 

Consequently, L I JQ’ and vector L is orthogonal to R". Using (2.11, we arrive at the 

following conclusion: in steady-state motion the sphere's center of mass moves along a circul- 

ar orbit, while the deformed sphere is stationary in the orbital coordinate system. 

The steady-state values of R-and L are found from the equations 

(2.3) 

Numerical calculation shows that Qi > 0 (i = 1, 2, 3). 

(2.3) can have either two (when G'> G*) 

Depending on the magnitude of G, Eq. 
or one (whenG = G*) or no (when G<G*J solutions 
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(the solid lines on the Fig.lshow the dependence of L on II accord- 

ing to the first equation in (2.3); the dashed line, according to 
the second equation). 

Let us show that the steady-state motion is unstable for the 
smaller root R, and is stable for the larger root R,. The equa- 
tions in variations for the second of Eqs. (1.20) and for integral 

(2.1) have the form 

1’ -~ zQ:,/<-’ 11 - I,k - x (I, R”)Rol i 2xQ,Xm3 (L :: R”) x (2.4) 

(1, R”) = u, 2nlns,‘: ;- MR’k ,m 1 m= 0, x z 1 ~im J&-‘R-S 

Fig.1 Here I, F,k are the variations of quantities L, R, Q’ , respect- 
ively. The area constant G does not vary. Eliminating k from 

the first equation in (2.4) and projecting the resulting equation 

onto the axes of the orbital coordinate system, we obtain 

1,' ! a,,& ~1 a,3lz = 0, (2.5) 
1,’ -i- u:,,,l, -i u311, =: 0, 

0 ,a = 9 1 2Q,R-“Lx, oa3 0, a,, ~= ~xQ,.I,V/~-‘, ozll :- --Q’ 

The quantities I,, l,,l, are the projections of vector 1 onto the orbital axes Cx'y'z' rotating 
with constant angular velocity Q' around axis Cy’. The first and third equations in (2.5) 
are independent of the second. From them it follows that 2, and I, tend to zero ( a focus- 
type stable point). 

When 1, = 1, = I') and 1, # 0 the perturbed motion becomes planar since according to (2.1) 

the radius-vector R is then orthogonal to G. In this case the equations of perturbed mo- 

tion in projections onto the axes of the orbital coordinate system can be written as (the 

first equation in (1.20) and the projection of the second equation in (1.20) onto axis Cy') 

ME’* + ~xQ~R-~K + cE - 2NR!Xq + 2QlR-“Ll, = 0, 2MS2’y -t hfR9’ + xQ3R-‘J,q - xQ3R-‘1, = 0 (2.6) 

1,’ + xQ~R-~& - xQ3R-‘J,q = 0, c = -2MyR-3 - MPz - 7Q,R-8 - 4Q1R-5L’ 

Here E and n are the variations of R and S', respectively (rle, = k). The characteristic 

equation of system (2.6) is 

D (a,D3 -! a,D2 + a,D + us) = 0, a, = IwR2 a, = xMR-~ [3Qs 

a2 = MR* (c + 4MW) + ~x~Q,Q&-~~ (MR” + Jo), 

+ Q3 (MR’ + Jo)1 (2.7) 

a3 = xQ~R-~ Ic (MR2 + J,) i 4WR2~‘2 (1 - Q1J,2R-5M-‘)l 

The quantities R,P,c in (2.7) correspond to steady-state motion. Equation (2.7) has one 

zero root, which is a consequence of the law of conservation of angular momentum. The remain- 

ing roots have negative real parts for the steady-state motion with orbit radius 1s2, which 

follows from the validity of the Hurwitz criterion inequalities ni >. 0 (i : 0, 1, 2, 3) and 

alap > a0a3. The approximate equalities pR,-"z &*'* and c2 ̂ __3,\li&'2 are valid for root I<? 

and further 

ap z JI=R,=52,‘= -j- yw23Q,Q3R-1s (ilIR,2 + Jo) >.. 0 

a3 =: xQ~R,-“_W~&‘~ (1 - A/,~.lf-‘H,-2 - 4Q1J,2M-‘R,-5) > 0 

ala2 - aoa3 > xWR~-~ [4Q,.~,dl~,‘2 i 3Q, (c, + ~A4Q,‘2)1 > 0 

The coefficient o3 < 0 for root R, since R," z Q,J,2M-rand a3 z -xQ3Rlh6 (MR,’ + J,)(~MPR,-~ -C 
51tfP,‘~ + 7Q,R,-*) < 0, Thus, the steady-state motion with orbit radius R, is stable, while with 

orbit radius H, is unstable. 
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